
Fatals: immediate action neccessary,
errors: data unacceptable,

warnings: data possibly not ok,
informatory: fine - just for info,

unclear: title lines or open issues.

Thematic exception groups (see first column):
ACCEss errors, GENEral checks, METAdata and file name checks,

TABL: inconsistencies in comparison to meta data tables,
TIMEaxis checks, VARIables' checks.

OBSOlete messages (not used for CMIP5 project).

The following flags F<n> refer to general checks,
mainly on the time axis.

key
group

description comment

F-1
GENE

--
Not checked

F0
GENE

--
No error found

F1
TIME

testTimeStep() ^0, ^5
Error: negative time step

F2
TIME

testTimeStep() ^0, ^5
Error: missing time step

This, of course, is no error if the QC is run over several time slices with intentional gaps in
between.
You may want to set NON_REGULAR_TIME_STEP in the setup file to check only for positive
increments
(of perhaps different sizes).

F4
TIME

testTimeStep() ^0, ^5
Error: identical time step

F8
TIME

testCalendarTimeBounds()
Error: negative/zero time bounds range

F16
TIME

testCalendarTimeBounds() ^0
Error: overlapping time bounds ranges

F32
TIME

testCalendarTimeBounds() ^0
Warning: gap between time bounds ranges

This warning refers to the bounds CF defines for every time step within a file. Rightbound(n)
should be = Leftbound(n+1).

F100
VARI

testData()
Warning: found a record entirely with filling value

F200
VARI

testData()
Warning: found a record entirely with constant value

F400
VARI

testData()
Warning: suspect minimum
Note: no table comparison; inferred from the data

F800
VARI

testData()
Warning: suspect maximum
Note: no table comparison; inferred from the data

F1600
VARI

testData()
Warning: undefined standard deviation

F3200
VARI

testData()
Warning: suspecting a replicated record
Note: a record of min, max, ave, and stdDev
is identical to a previous one.
Note: fields of constant or filling value excluded.

For most variables this should not happen. Check if 2 consecutive steps may have identical values.
The comparison of the values is: abs(diff) < 10**-7 .

Some of the following exception codes interrupt the check process.

Ordered by keys. (This list ordered by groups is here).

key
group

description comment

1
OBSO

from qc_main.cpp: --
Internal errors indicating flaws in
the scripts or qc_main.cpp.

All the errors of the 1_ family should not happen unless
scripts or qc_main.cpp was changed. They may happen in
test or debugging situations.

1_1
OBSO

from qc_main.cpp: getFilename() ^2
Invalid name.

...in script qcExecutor (see comment of exception 1).

1_2
OBSO

from qc_main.cpp: insertPointedObj() ^2
String parsing: definition of object ... must not have references.

...in the c++ code (see comment of exception 1).

1_3
OBSO

from qc_main.cpp: getopt() ^2
Undefined option ...

...in the c++ code (see comment of exception 1).

1_4
OBSO

from qc_main.cpp: setObjLinks() ^2
... must have a single reference.

...in the c++ code (see comment of exception 1).

2
OBSO

from qc_main.cpp: entry() ^2
No QC object linked to InFile object.

...in the c++ code (see comment of exception 1).

5
OBSO

from Base.cpp: setFillingValue()
Undefined explicitly provided variable name.
Note: not related to CMIP5.

6
OBSO

from Base.cpp: setVarPropsNoOperation()
No rules to link alias to any variable in operation.
Note: not related to CMIP5.

7
OBSO

from Base.cpp: setVarPropsNoOperation()
No rules for finding a variable name.
Note: not related to CMIP5.

8
OBSO

from Base.cpp: setVarPropsNoOperation()
No rules for finding a variable name.
Note: not related to CMIP5.

...in the c++ code (see comment of exception 1).

9
OBSO

from Base.cpp: getVarname(std::string &s, std::vector<std::string> &) ^2
Invalid assignment statement of variable names.
Note: not related to CMIP5.

10
ACCE

from InFile.cpp: init() ^2
Could not open netCDF file.
Note: non-operational processing only.

NetCDF output file for (QC results) could not be opened.
This is checked before, too - so there normally should be
no access errors here.

12
VARI

from InFile.cpp: checkVarType()
The type of the variable is not float.
Note: CMIP5 requires always float.

The checked variables are expected to be float! Double
variables are not checked but their error messages can be
suppressed in setup file.
Unchecked variables cannot be part of a DOI (persistent
Document Object Identifier).

14
TIME

from InFile.cpp: setGeoParam()
Dimension rank of the field is higher than 3D.
Note: the dimension of time is excluded.

Three space dimensions are allowed as maximum.

15
VARI

from InFile.cpp: setGeoParam()
Vertices or bounds of unknown format.

16
VARI

from InFile.cpp: scanNcVars() ^2
Explicitly provided variable name not found in the netCDF file.
Note: non-operational processing only.

The expected variable was not found in the NetCDF
header.

18
VARI

from InFile.cpp: xtractNum()
Dimension rank of the field is higher than 3D.
Note: the dimension of time is excluded.

2D (lat/lon) and 3D (lat/lon/alt) data are expected.

19
GENE

from InFile.cpp: init() ^2
No QC object linked to the InFile object.
Note: non-operational processing only.

Instance of c++ class "QC" does not exist (see comment of
exception 1).
If this is the case, exception 2 should have been thrown
before.

21
VARI

from InFile.cpp: scanNcVars()
Neither explicit variable name nor CMOR encoded filename.
Note: search priority: clear excluded variables, time
dependence, multi-dimensional variables, independent
variables matched with filename.

In the setup file a fixed field variable was spcified but not
found in the data.

22
VARI

from InFile.cpp: scanNcVars()
Fixed field variable name from filename not found in the netCDF file.

28
GENE

from Parse.cpp: convertEmbeddedObj()
Undefined specification in the command-line arguments.
Note: non-operational processing only.

Fatal, as this should not happen in the CMIP5 project.
This routine is called from a script. So its command line
input should be clean.

29
GENE

from Parse.cpp: convertEmbeddedObj()
Syntax error in the command-line arguments.
Note: non-operational processing only.

Fatal, as this should not happen in the CMIP5 project.
This routine is called from a script. So its command line
input should be clean.

30
OBSO

Checks from 30 to 39 refer to the consistency of parent-
child relations between experiments.

30_1
ACCE

from qcExecutor_FS (script): checkParent()
Invalid path to parent: <path>
Note: issues a warning.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl. There the
attribute should be set to n/a.

30_2
ACCE

from qcExecutor_FS (script): checkParent()
No parent file found in path: <file>
Note: issues a warning.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl. There the
attribute should be set to n/a.

30_3
META

from QC.cpp: QC.checkCMIP5_Filename()
Missing netCDF attribute: parent_experiment_id.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl. There the
attribute should be set to n/a.

30_4
META

from QC.cpp: QC.checkCMIP5_Filename()
Missing netCDF attribute: parent_experiment_rip.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl. There the
attribute should be set to n/a.
You may want to set PARENT_EXP_RIP=none in the
setup file to suppress this check (e.g., for older data from
when this attirbute was not yet required).

30_5
GENE

from testParentChild.cpp: testParentChild.main()
Missing command-line parameter for the child experiment: -c file.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl.

30_6
GENE

from testParentChild.cpp: testParentChild.main()
Missing command-line parameter for the parent experiment: -p file.

The information on the parent-child relation is requested
in CMIP5 for all experiments but piControl.

31_1
ACCE

from testParentChild.cpp: testParentChild.main()
Could not open the netCDF file of the child experiment

Missing authorisation.

31_2
ACCE

from testParentChild.cpp: testParentChild.main()
Could not open the netCDF file of the parent experiment

Missing authorisation.

32
TIME

from testParentChild.cpp: testParentChild.getTimeProperties()
Different calendar types in parent and child.
Note: This could work. Thus, only a warning.

33_1
META

from testParentChild.cpp: testParentChild.getTimeProperties()
No time units attribute in the child file.

33_2
META

from testParentChild.cpp: testParentChild.getTimeProperties()
No time units attribute in the parent file.

34_1
META

from testParentChild.cpp: testParentChild.getTimeProperties()
Time units attribute: different measuring in child and parent.

34_2
META

from testParentChild.cpp: testParentChild.getTimeProperties()
Time units attribute: different reference dates in child and parent.

35
TIME

from testParentChild.cpp: testParentChild.sync()
Child begins earlier than the parent
Note: potentially different time units are taken into account.
The last lag of the parent is the one closest before the first one of the child.

36
TIME

from testParentChild.cpp: testParentChild.checkTime()
The lag across files differs from the last lag in the parent.
Note: potentially different time units are taken into account.
The last lag of the parent is the one closest before the first one of the child.

37
TIME

from testParentChild.cpp: testParentChild.checkTime()
The last lag of the parent differs from the first lag of the child.
Note: potentially different time units are taken into account.
The last lag of the parent is the one closest before the first one of the child.

38_1
TIME

from testParentChild.cpp: testParentChild.checkTime()
No bounds attribute of time of the parent.

38_2
TIME

from testParentChild.cpp: testParentChild.checkTime()
No bounds attribute of time of the child.

38_3
TIME

from testParentChild.cpp: testParentChild.checkTime()
Time bound lags of the last parent lag and the first lag of the child overlap.

41
ACCE

from testParentChild.cpp: CMIP5.openTable() ^3
Could not open the CMIP5 table.

Refers to the CMIP5 standard table for comparison of
variable names etc.

42
TABL

from testParentChild.cpp: CMIP5.findNextVariableHeadline() ^3
MIP table name not found in the CMIP5 table.

43
TABL

from testParentChild.cpp: QC.checkStandardTable() ^3
Missing column(s) in the standard table.

44
TABL

from testParentChild.cpp: QC.checkStandardTable() ^3
Variable not found in the standard table.

The variable does not need to be in the CMIP5 standard
table in case option
"TABLE_VARIABLE_CONSTRAINT=RELAXED" is
set in the setup file.
An additional variable of surface pressure (e.g., ps) to base
the vertical coord system on is ok.

45_1
TIME

from testParentChild.cpp: QC.getDimMetaData()
Variable time has no unit attribute.

Fatal, as the time axis cannot be checked.

45_2
TIME

from testParentChild.cpp: QC.getDimMetaData()
Time attribute declares time_bounds, but there is no such variable.

45_3
TIME

from testParentChild.cpp: QC.getVariableMetaData()
Variable name in filename does not match any variable in the file.

45_4
TIME

from testParentChild.cpp: exploitFormulaTerms()
Attribute formula or formula_terms is missing for variable <var>.

46
META

from testParentChild.cpp: CMIP5.checkGlobalAttributes()
Missing required netCDF global attribute: <name>

The following exceptions (46_x) refer to the file name
syntax and to NetCDF attributes. Checks are based on the
conventions used in CMIP5.

46_1
META

from testParentChild.cpp: checkCMIP5_Filename()
Missing netCDF attribute: project_id.

Fatal, as many parts of the CMIP5 workflow depend on
the DRS syntax.

46_2
META

from testParentChild.cpp: checkCMIP5_Filename()
Missing netCDF attribute: physics_version.

Fatal, as "no sub-table named in file header" should not
happen when data is written by CMOR2.

46_3
META

from testParentChild.cpp: checkCMIP5_Filename()
Missing netCDF attribute: initialization_method.

46_4
META

from testParentChild.cpp: checkCMIP5_Filename()
Missing netCDF attribute: realization.

The names of the CMIP5's subtable differ in file name and
file header of the NetCDF file.
Fatal, as this should not happen when data is written by
CMOR2.

46_5
META

from testParentChild.cpp: checkCMIP5_Filename()
Missing netCDF attribute: experiment_id.

46_6
META

from testParentChild.cpp: CMIP5.checkCMIP5_Filename()
Filename is inconsistent with CMOR encoding.

For the required structure of the file name see Taylor et al,
CMIP5 Data Reference Syntax (DRS) and Controlled
Vocabularies.

46_7
META

from testParentChild.cpp: CMIP5.checkCMIP5_Filename()
Filename does not match CMIP5 attributes.

The file (chunk) name constructed from the header
information in the file does not match the actual file name.
E.g., the header's global attribute for the realisation's
number (or initialisation or physics) does not match the
r<i>i<j>p<k> portion of the file name.

46_8
META

from testParentChild.cpp: CMIP5.getMIP_table()
Invalid MIP table name in CMIP5 attributes.

Mind: a string like "amon" is case sensitive.

47
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5
Table error for dimension(s) of a variable.

The following exceptions (47_x) refer to the dimension
information in the NetCDF file header.
At first, this is compared to the CMIP5 standard table,
from the second temporal subset (chunk, file) on to the
internal project table.

47_1
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: output name.

The output name is the variable acronym used in the file
name.

47_2
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: standard name.

47_3
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: long name.

47_4
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: axis.

Correlation lon/lat/alt/time vs X/Y/Z/T according standard
table did not match.

47_5
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: checksum.
Note: Indicates a change in the layering or model grid.

Checksum is over the set of values of this (1D) axis, e.g.,
over var=altitudeValues() or var=listOfBasins:{atlantic,
pacific, indic}.
The axes' values of different chunks (including char
dimensions) are compared by checksums to
a: each other (file to file) and
b: the required values of Taylor's tables (if given there).
This error is "nearly fatal". However, we might accept

obvious rounding errors.

47_6
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: units.

47_7
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: bounds.
a) Conflict in request for bounds.
b) Bounds not available in the file.

Existence of bounds in the file header needs to be one of
{yes,no}. Value found does not match.

47_8
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: <variable>, <dimension>: size.

Length of axis (=number of points) should be constant!
Except: the number of vertical levels may vary
(dim=plev).

47_9
TIME

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: time, units: missing key string
in the units attribute 'PERIOD since'.
Note: PERIOD indicates key: minutes, hours, days, etc.
Note: Throws always an error flag, because the date at each
time step cannot be determined later.

47_10
TIME

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
Standard/Project table: time, units: different reference dates.
Note: Throws always a warning flag, because the date at each
time step might be found correct later.

For files where time is coded as <referenceTime>+
<timeStep>: change of reference time.
This may be ok in case <timeStepUnit> is changed
accordingly.

47_11
TABL

from testParentChild.cpp: QC.checkStandardTableDimBounds() ^5, ^7
Number of dim_bounds do not match those of the standard table.

47_12
TABL

from testParentChild.cpp: QC.checkStandardTableDimBounds() ^5, ^7
Values of dim_bounds do not match those of the standard table.

47_13
TABL

from testParentChild.cpp: QC.checkDimTableEntry() ^5, ^7
File: coordinate attribute variable: incorrect units.

48
TABL

from testParentChild.cpp: QC.checkDimStandardTable() ^3, ^4
Dimension not found in the standard table.

49
TABL

from testParentChild.cpp: QC.checkDimStandardTable() ^3
Table sheet for dimensions not found in the CMIP5 table.

50
TABL

from testParentChild.cpp: QC.checkDimStandardTable() ^3
Corrupt standard sub-table for dimensions: wrong number of columns.

51
TABL

from testParentChild.cpp: QC.checkDimStandardTable() ^3
Missing value in MIP table 'dims' in column 'bounds'?.
Note: Required is 'yes' or 'no'.

52
TABL

from testParentChild.cpp: QC.checkDimStandardTable() ^3, ^4
Dimension from the table not found in the file.

54
ACCE

from testParentChild.cpp: QC.checkProjectTable()
Could not create project table.
Note: Due to a faulty configguration file entry.
Note: Signal to qcManager to shutdown.

55
TABL

from testParentChild.cpp: QC.checkProjectTable() ^2
Corrupt project table: variable | dimension | auxiliary.

56
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table errors for auxiliaries.

The following exceptions (56_x) refer to checks of
auxiliary variables in the file against the internal project
table. Here "auxiliary variables" refers to all time
independent variables (except a fixed variable as standard
name), e.g. dimensions etc.

56_1
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table: time independence check failed.

A variable which changed from being independent on time
to being time dependent.

56_2
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table: number of dimensions of auxiliary changed.

E.g., a change in the number of pressure levels.

56_3
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table: checksum of levels or grid values changed.

Checksum of the set of values of a space dimension has
changed between files.

56_4
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table: missing auxiliary in the file.

An auxiliary variable "disappeared" between two temporal
subsets (chunks, files).

56_5
TABL

from testParentChild.cpp: QC.checkProjectTableAuxiliary()
Project-table: missing auxiliary in the table.

An auxiliary variable "appeared" between two temporal
subsets (chunks).

56_6
TABL

from testParentChild.cpp: QC.getVariableMetaData()
Option AUXILIARIES is not syntax compliant.

57
ACCE

from testParentChild.cpp: QC
No path to tables; faulty config-file entry.
Note: Signal to qcManager to shutdown.

No path to CMIP5 standard table OR to project table ==>
no checks possible ===> end of work.

58
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Table error for a variable.

The following exceptions (58_x) refer to checks of the
main variable in the file against the internal project table
(or the CMIP5 standard table).
You may use a flag in the setup file to switch between the
detailed code (58_x) and the lumped coarse form (just
"58").

58_1
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: standard name conflict.

Different standard names in NetCDF header and
project/standard table.

58_2
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: long name conflict.

Different long names in NetCDF header and
project/standard table.

58_3
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: units conflict.
a) variable has no units attribute, table requires units= or units=1.
b) variable has no units attribute.
c) variable has <v_units>, table requires <t_units>.

Different units in NetCDF header and project/standard
table.

58_4
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: cell-method conflict.

Different cell methods in NetCDF header and
project/standard table.
Cell method may be missing in the file header (or the
table) or is wrong. In the latter case, this will affect the
time step width
(provided it refers to dimension time) and will be detected
as time axis inconsistency.

58_5
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: type conflict.

Different variable type (float expected) in NetCDF header
and project/standard table.
Fatal, as this variable will not be checked.

58_6
TABL

from testParentChild.cpp: QC.checkSigmaPressureCoordinates()
No variables a(k) or b(k) found for the hybrid sigma pressure coordinates.

58_7
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: cell-measures conflict.

Dimensions in CF carry the "cell-measure" attribute
(mean,..). This information is compared to the entries in
the Taylor tables.

58_8
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: incorrect coordinate attribute.

58_9
TABL

from testParentChild.cpp: QC.checkVarTableEntry() ^5
Standard/Project table: variable: type check discarded, not specified in the MIP Table.

The type of the variable could not be checked as it was not
found in the MIP table.

59
VARI

+ The following exceptions (59_x) refer to checks of
variables.

59_1
VARI

from testParentChild.cpp: QC.finally()
Data set entirely of const value.

59_2
VARI

from testParentChild.cpp: QC.finally()
Data set entirely of _FillValue.

59_3
VARI

from testParentChild.cpp: QC.finally()
All records (data at given time steps) are identical.

60
META

from testParentChild.cpp: QC.initResumeSession()
Name of a variable has changed
Note: Compared to previous chunks.

63
OBSO

from testParentChild.cpp: QC.sync()
All records have previously been processed.
Note: This is not an error: idle

All existing records of the file have been processed.
However, expected file end (according to file name) and
time stamp of last record do not match.
This should not happen, if you run these checks on a non-
increasing (=not supplemented) fixed set of data.

64
GENE

from testParentChild.cpp: QC.syncRedo()
Indication of a renewal of the input file.

This should not happen unless you run QC during the
model run.
In this case it means that the model perhaps has newly
started to write this file
(i.e., less time steps as during last visit of this file were
found by the checking routine).

65
GENE

from testParentChild.cpp: QC.syncRedo()
Faulty argument in config-file for redo-option.

66
GENE

from testParentChild.cpp: QC.syncRedo()
REDO is selected, but the qc-file is empty.

67
GENE

from testParentChild.cpp: QC.syncRedo()
REDO requires at least one record in qc_<filename>.nc

68 from testParentChild.cpp: QC.testTimeStep()
Waiting for a closing temporal gap.
Note: This is not an error.

tbd...

69
TIME

from testParentChild.cpp: QC.initResumeSession() ^2
Sub-cycle of time step has changed.
Note: For any kind of cycles within a time step (e.g. diurnal cycle).
Note: Not for CMIP5

Should not happen in CMIP5 as values of, e.g., subcycle
UTC 0/6/12/18 never are aggregated to four distinct
monthly means.

70
GENE

from testParentChild.cpp: QC.(different methods)
Any error in any record.

In this case, F<value> is given for specification according
to the table at the top of this page (see file
qc_<fileName>.nc, too).
The severity level of this exception depends on the level
of exception F<value>.

71
GENE

from testParentChild.cpp: QC.testTimeStep()
Error in a time record (Error Flags: 1, 2, 4) stops and blocks
further attempts, if option STOP_AT_TIME_ERROR is enabled.

In this case, F1,F2 or F4 is given for specification
according to the table at the top of this page.
No further attempts to check these Atomic Dataset are
made.

71_1 from testParentChild.cpp: qcManager
Ambiguity check failed for sorted dates of sub-temporal file set.

This check refers to the modification time stamp which is
stored by the operating system of the computer.
The modification times of the files (chunks) should be
ascending for files with ascending values on their time
axes.
In this case the check failed.

71_2 from testParentChild.cpp: qcManager
Modification time check failed for ascending dates of sub-temporal files.

This check refers to the modification time stamp which is
stored by the operating system of the computer.
The modification times of the files (chunks) should be
ascending for files with ascending values on their time
axes. In case of this warning it is not.
The check may be suppressed by setting
"SYNC_FILE_AMBIGUITY_CHECK = NO_MOD".

72
TABL

from testParentChild.cpp: QC.parseTimeTable()
Violation against time information of the standard table.

The following exceptions (72_x) refer to checks of the file
time axis against the CMIP5 standard table's time
information.

72_1
TABL

from testParentChild.cpp: QC.parseTimeTable()
Time record before the first time-table range.

72_2
TABL

from testParentChild.cpp: QC.parseTimeTable()
Time record after the last time-table range

72_3
TABL

from testParentChild.cpp: QC.parseTimeTable()
Too many time records compared to the time-table.

95
TIME

from testParentChild.cpp: QC.testTimeStamp()
Ambiguous or faulty first time-stamp in the filename.
Note: Faulty, if the stamp is younger than 1st time-record.
Ambig., if the stamp is too coarse to resolve time-records.

The time of the file's start record is in conflict with the
starttime of the file name. The max allowed difference
depends on the step width.

96
TIME

from testParentChild.cpp: QC.testTimeStamp()
Filename time-stamp error (2nd date).
Note: Time record exceeds time-stamp of the filename.

The time of a file's record is not in the time span of the file
name.

97
TIME

from testParentChild.cpp: QC.testTimeStamp()
Invalid time-range in filename.

The file name does not provide a legal (:= CMOR2
conform) start-stop time span (start>stop).

99
GENE

from testParentChild.cpp: QC.finally()
Status: apparently in progress.
Note: This indicates that no error occurred. But, the end time
of the input filename and the last time value in the data
did not match (with the uncertainty of 0.75 of a time step).
So, it is likely that the file is still in a stage of processing.

As these procedures are meant to run on continuously
supplemented files, <stop time of file name> != <time of
last record> might indicate that this file has not yet been
readily filled.

111
GENE

from testParentChild.cpp: qc-main
The program exited without any exit code above and did not
produce a single file. This is an error.

A run that has not found any exception should have left a
NetCDF file.

Footnotes:

also across from previous file1.
Non-operative mode.2.
for option TABLE_STANDARD=... set in the configuration3.
for option TABLE_RELAXED_DIM_CONSTRAINT disabled4.
a series of tests where a failure of one of a few of them aborts
the program and leads to a blocking of further attempts.

5.

writes messages to a file qc_error_<variable...>.nc and blocks
further attempts

6.

conflict is reported, if the attribute of the dimension is available
in both table and file meta data. If one is missing, this is reported.

7.

